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Exercice 1. (a) Supposons que W1 ⊂ W2 et considérons un vecteur y tel que y ∈ W ⊥
2 ,

alors ⟨x, y⟩ = 0 pour tout x ∈ W2. En particulier ⟨x, y⟩ = 0 pour tout x ∈ W1 car par
hypothèse on a W1 ⊂ W2. Par conséquent y ∈ W ⊥

1 . On a donc montré que W ⊥
2 ⊂ W ⊥

1 .

(b) On a vu au cours (Théorème 11.2.3) que V = W1⊕W ⊥
1 ; cela implique en particulier

que dim(W ⊥
1 ) = n−dim(W1) . Si x ∈ W1, alors ⟨x, y⟩ = 0 pour tout y ∈ W ⊥

1 par définition
de W ⊥

1 . Par conséquent W1 ⊂ (W ⊥
1 )⊥, or ces deux sous-espaces vectoriels ont la même

dimension et ils sont donc égaux.

(c) On montre les deux inclusions. Soit y un élément de (W1 + W2)⊥. Alors ⟨x, y⟩ = 0
pour tout x ∈ W1 + W2. En particulier ⟨x, y⟩ = 0 pour tout x ∈ W1, donc y ∈ W ⊥

1
et ⟨x, y⟩ = 0 pour tout x ∈ W2, donc y ∈ W ⊥

2 . Cela montre l’inclusion (W1 + W2)⊥ ⊂
W ⊥

1 ∩ W ⊥
2 .

Inversément, si y ∈ W ⊥
1 ∩ W ⊥

2 , alors pour tout x ∈ W1 + W2 on a ⟨x, y⟩ = 0 car on
peut écrire x = x1 + x2 avec x1 ∈ W1 wt x2 ∈ W2, ce qui implique que

⟨x, y⟩ = ⟨x1 + x2, y⟩ = ⟨x1, y⟩ + ⟨x2, y⟩ = 0 + 0 = 0

car le produit scalaire est bilinéaire. Par conséquent y ∈ (W1 + W2)⊥ et on a prouvé
l’inclusion W ⊥

1 ∩ W ⊥
2 ⊂ (W1 + W2)⊥.

(d) Le dernier point est une conséquence de (b) et (c). Pour le voir, on note U1 = W ⊥
1

et U2 = W ⊥
2 et on applique les points (b) et (c) pour obtenir

W ⊥
1 + W ⊥

1 = U1 + U2 = ((U1 + U2)⊥)⊥ = (U⊥
1 ∩ U⊥

2 )⊥ = (W1 ∩ W2)⊥.

Exercice 2. (a) Un calcul direct donne Rt
θRθ = I2 et St

φSφ = I2.

(b) On a det(Rθ) = +1 donc Rθ ∈ SO(2) et det Sφ = −1 donc Sφ ̸∈ SO(2).

(c) La matrice Sφ est symétrique, donc diagonalisable comme matrice réelle par le
théorème spectral.

(On peut aussi le voir à partir du déterminant, qui est le produit des valeurs propres.
Les valeurs propres ne peuvent pas être complexes conjuguées car det(Sφ) = −1. Donc les
valeurs propres de Sφ sont réelles et de signe opposée, en particulier elles sont distinctes
et donc Sφ est diagonalisable).

(d) On a S2
φ = I2. Donc le polynôme minimal est µSφ(t) = t2 − 1 = (t − 1)(t + 1). Il

est scindé à racines simples et donc Sφ est diagonalisable sur le corps des réels. Notons
pour la suite que les valeurs propres de Sφ sont ±1.

(e) Les valeurs propres complexes de Rθ sont eiθ = cos(θ) + i sin(θ) et e−iθ = cos(θ) −
i sin(θ) ; donc Rθ n’est pas diagonalisable comme matrice réelle si θ ̸∈ {0, π}.

Si θ = 0 ou θ = π (modulo 2π) alors Rθ = ±I2 est trivialement diagonalisable (en fait
c’est déjà une matrice diagonale).
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(f) Rθ est diagonalisable comme matrice de M2(C) pour tout θ. On l’a vu au point
(e) dans le cas où θ ∈ {0, π}, et si θ ̸∈ {0, π}, alors Rθ possède deux valeurs propres
complexes distinctes et est donc diagonalisable comme matrice de M2(C).

(g) Soit v = (x, y) un vecteur non nul de R2. On calcule alors que l’angle entre v et
Rθ(v) est

cos(α) = ⟨v, Rθ(v)⟩
∥v∥∥Rθ(v)∥ = ⟨v, Rθ(v)⟩

∥v∥2 = cos(θ).

Donc α = ±θ. En argumentant sur l’orientation on vérifie que α = θ.

(h) On a

R(θ)R(φ) =
(

cos (φ) − sin (φ)
sin (φ) cos (φ)

)(
cos (φ) − sin (φ)
sin (φ) cos (φ)

)
=

(
cos (θ) cos (φ) − sin (θ) sin (φ) − cos (θ) sin (φ) − sin (θ) cos (φ)
sin (θ) cos (φ) + cos (θ) sin (φ) cos (θ) cos (φ) − sin (θ) sin (φ)

)
D’autre part il est clair que R(θ)R(φ), qui représente la composition d’une rotation
d’angle θ et φ est la rotation d’angle θ + φ, on a donc

R(θ)R(φ) = R(θ + φ) =
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
,

ce qui donne une preuve des relations :

cos (θ + φ) = cos (θ) cos (φ)−sin (θ) sin (φ) et sin (θ + φ) = sin (θ) cos (φ)+cos (θ) sin (φ) .

(i) En utilisant les relations cos(2φ) = cos(φ)2 − sin(φ)2 et sin(2φ) = 2 cos(φ) sin(φ), on
calcule que

Sφ

(
cos(φ)
sin(φ)

)
=
(

cos (2 φ) cos (φ) + sin (2 φ) sin (φ)
sin (2 φ) cos (φ) − cos (2 φ) sin (φ)

)
=
(

cos(φ)
sin(φ)

)
Ainsi

(
cos(φ)
sin(φ)

)
est un vecteur propre de valeur propre 1 pour Sφ. Puisque Sφ est symé-

trique, on doit avoir un vecteur propre orthogonal ce vecteur (pour la valeur propre −1)
et on vérifie en effet que

Sφ

(
− sin(φ)

cos(φ)

)
= −

(
− sin(φ)

cos(φ)

)
On a donc trouvé une base orthonormée de R2 formée de vecteurs propres de Sφ et on a
donc la diagonalisation orthogonale suivante :(

cos(φ) sin(φ)
sin(φ) − cos(φ)

)
·
(

cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

)
·
(

cos(φ) sin(φ)
sin(φ) − cos(φ)

)
=
(

1 0
0 −1

)
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Exercice 3. (a) Une matrice A ∈ Mn(R) est orthogonalement diagonalisable s’il existe
une matrice orthogonale P ∈ O(n) (i.e. P tP = In) telle que

D = P −1AP = P tAP est une matrice diagonale.

Observer que du fait que P −1 = P t (car P ∈ O(n)), la matrice diagonale D est à la
fois semblable et congruente à A.

Concrètement, pour diagonaliser orthogonalement une matrice réelle, il faut trouver
une base propre qui est orthonormée. La matrice modale (de changement de base) P est
alors une matrice orthogonale.

(b) Si A est orthogonalement diagonalisable, alors A = PDP t avec P ∈ O(n) et
Dt = D. On a donc :

At =
(
PDP t

)t = (P t)t
DtP t = PDP t = A.

(c) Oui, la réciproque est vraie par le théorème spectral. Donc une matrice A ∈ Mn(R)
est orthogonalement diagonalisable si et seulement si elle est symétrique.

(d) Le polynôme caractéristique de la matrice A donnée en (b) est χA(t) = (t − 1)(t −
2)(t + 2) et σA = {1, 2, −2}. Il y a donc trois espaces propres de dimension 1 et on sait
que ces espaces propres sont deux-à-deux orthogonaux (car A est symétrique).

Donc toute base propre de A est une base orthogonale de R3, que l’on peut rendre
orthonormée simplement en divisant chaque vecteur de cette base par sa norme.

On trouve une base propre de A en résolvant AX = λX pour λ ∈ {1, 2, −2} (par
exemple en utilisant la méthode de Gauss-Jordan). Une telle base propre est

X1 = (
√

2, 1, 0), X2 = (−1,
√

2, 1), X3 = (1, −
√

2, 3).

On vérifie d’ailleurs facilement que ces vecteurs sont deux-à-deux orthogonaux. En nor-
malisant ces vecteurs (i.e. en les divisant par leur norme), on obtient la base spectrale
(base propre orthonormée) voulue :

U1 =
(√

6
3 ,

√
3

3 , 0
)

, U2 =
(

−1
2 ,

√
2

2 ,
1
2

)
, U3 =

(√
3

6 , −
√

6
6 ,

√
3

2

)
.
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On vérifie alors que P ∈ O(3), i.e. P tP = I3. Ceci implique que P −1 = P t et on vérifie
aussi que

P −1AP = P tAP = P t ·

 1 0 −1
0 1

√
2

−1
√

2 −1

 · P =

 1 0 0
0 2 0
0 0 −2



Exercice 4. (a) Supposons que Q(v) = β(v, v) mais que β n’est pas symétrique. Posons
alors α(u, v) = 1

2(β(v, w) + β(w, v)), alors α est clairement symétrique et

α(v, v) = β(v, v) = Q(v).

(b) On suppose maintenant que Q(v) = β(v, v) où β est bilinéaire et symétrique. En
utilisant la bilinéarité, on vérifie alors que pour tous v, w ∈ V on a

1
4(Q(v + w) − Q(v − w)) = 1

4(β(v + w, v + w) − β(v − w, v − w)) = β(v, w),

donc β est déterminé par Q.

(c) La bilinéarité de β entraîne que

Q(λv) = β(λv, λv) = λ2β(v, v) = λ2Q(v).

(d) La réciproque est fausse, en général la condition Q(λv) = λ2Q(v) n’entraîne pas
que Q est une forme quadratique. Voici un exemple, considérons la fonction Q1 : R2 → R
définie par Q1(x1, x2) = (|x1| + |x2|)2. Alors Q1 vérifie Q1(λx) = λ2Q1(x) pour tout λ ∈ R
et tout x ∈ R2, mais ça n’est pas une forme quadratique. Pour le voir on peut vérifier
que la fonction

φ(x, y) = 1
4 (Q1(x + y) − Q1(x − y))

n’est pas une forme bilinéaire. Par exemple on a

φ(1, 0; 1, 1) = 2, φ(1, 0; 0, 1) = 0, φ(1, 0; 1, 0) = 1;

donc
φ(1, 0; 1, 1) ̸= φ(1, 0; 0, 1) + φ(1, 0; 1, 0)

Plus généralement, la fonction Qp : Rn → R définie pour 1 ≤ p < ∞ par

Qp(x) =
(

n∑
i=1

|xi|p
)2/p

vérifie Qp(λx) = λ2Q(x) pour tout λ ∈ R et tout x ∈ Rn, mais c’est une forme quadratique
(i.e. cette fonction provient d’une forme bilinéaire) si et seulement si p = 2.
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Exercice 5. Nous procédons par complétion des carrés. Pour Q1 on a presque immédia-
tement

Q1(x, y) = 4(x + y)2 − 4x2.

Pour Q2 il faut plusieurs étapes. On considère d’abord la partie de la forme quadratique
Q2 qui contient x, on a

4x2 − 4xy + 12xz = (2x − y + 3z)2 − (y2 − 6yz + 9z2).

Donc

Q2(x, y, z) =
(
(2x − y + 3z)2 − (y2 − 6yz + 9z2)

)
−y2−10yz+7z2 = (2x−y+3z)2−2y2−4yz−2z2.

Maintenant il faut écrire (2y2 + 4yz + 2z2) comme somme de carrés (l’intérêt est qu’on
a une variable de moins : cette expression ne dépend plus de x), or on a clairement que
(2y2 + 4yz + 2z2) = 2(y + z)2. On a donc finalement

Q2(x, y, z) = 4x2 − 4xy + 12xz − y2 − 10yz + 7z2 = (2x − y + 3z)2 − 2(y + z)2.

Exercice 6. L’affirmation est que si Q(vj) = 0 pour tous les vecteurs d’une base
{v1, . . . , vn} de V , alors Q est identiquement nulle. Cette affirmation est fausse !

Avant de donner un contre-exemple, il est utile de se souvenir que si une application
linéaire est nulle sur tous les vecteurs d’une base, alors cette application est identiquement
nulle, c’est-à-dire nulle sur tous les vecteurs de l’espace vectoriel . Mais il n’y a aucune
raison que cette propriété soit vraie pour les formes quadratiques, car ce ne sont pas des
applications bilinéaires. En particulier, si Q(v) = Q(w) = 0, il n’est pas e priori vrai que
Q(v + w) = 0.

Voici un contre-exemple. Considérons la forme quadratique sur R2 définie par

Q(x) = x2
1 − x2

2 ⇔ g(x, y) = x1y1 − x2y2.

Les vecteurs u1 = (1, 1) = e1 + e2 et u2 = (1, −1) = e1 − e2 forment une base isotrope
(on vérifie que Q(u1) = Q(u2) = 0 mais Q n’est pas identiquement nulle.

Pour comparer, on peut en revanche observer que si une forme bilinéaire β : V ×
V → K vérifie β(vi, vj) = 0 pour tous les vecteurs vi, vj d’une base de V , alors β est
identiquement nulle, i.e. β(x, y) = 0 pour tous x, y ∈ V .
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Exercice 7. La troisième fonction n’est pas une forme quadratique, les autres le sont.

◦ Pour la première, on a Q(x1, x2, x3) = |x1 −x2 +x3|2 = (x1 −x2 +x3)2 (il ne faut pas
se laisser abuser par la présence des valeurs absolues, qui ici ne sont pas nécessaires). C’est
une forme quadratique sur R3 et la forme bilinéaire symétrique associée β : R3 ×R3 → R
est

β(x, y) = (x1 − x2 + x3)(y1 − y2 + y3).

◦ La deuxième fonctionnelle est aussi une une forme quadratique sur C2(R) et la
forme bilinéaire symétrique associée β : C2(R) × C2(R) → R est facile à deviner :

β(f, g) = 1
2

∫ 2π

0
(f(t)g′′(t) + f ′′(t)g(t))dt.

◦ La quatrième fonctionnelle s’écrit

det
(

x11 x12
x21 x22

)
= x11x22 − x21x12.

C’est une forme quadratique sur M2(R) et la forme bilinéaire symétrique associées β :
M2(R) × M2(R) → R est

β(X, Y ) = β

((
x11 x12
x21 x22

)
,

(
y11 y12
y21 y22

))
= 1

2 (x11y22 − x21y12 − y11x22 + y21x12) .

◦ La troisième fonction Q(x1, x2, x3) = (|x1−x2|+|x3|)2 vérifie Q(λx) = λ2Q(x), mais
elle n’est pas une forme quadratique. Pour le voir on peut écrire la formule de polarisation
et voir qu’elle ne donne pas une forme bilinéaire, mais le calcul est assez lourd. Une autre
méthode est de vérifier que Q n’est pas de classe C2. En effet, on a par exemple

Q(x1, 0, 0) = (|x1| + 1)2 = 1 + x2 + 2|x1|,

qui n’est pas une fonction différentiable de la variable x1.

Remarque : si on développe Q on trouve

Q(x1, x2, x3) = (|x1 − x2| + |x3|)2 = x2
1 + x2

2 − 2x1x2 + x3 + 2|x1 − x2||x3|,

contrairement à la première fonction de l’exercice, les valeurs absolues « persistent » lors
du développement, ce qui explique la non différentiabilité de Q.
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Exercice 8. (a) Démontrer que pour toute matrice A ∈ Mm×n(R), il existe une matrice
orthogonale P ∈ O(n) et µ1, . . . , µn ≥ 0 tels que

P tAtAP =

 µ2
1 0

. . .
0 µ2

n

 .

Les nombres µ1, . . . , µn s’appellent les valeurs singulières de la matrice A.

(b) Calculer les valeurs singulières de la matrice A =

 1 1
1 2
3 −1

 et B = (1 0 2).

Exercice 9. (a) Notons S = AtA, alors S est symétrique car St = At(At)t = AtA =
S. Donc par le théorème spectral S est orthogonalement diagonalisable. Nous devons
démontrer que les valeurs propres de S sont positives. Soit λ ∈ R une valeur propre de S
et v ∈ Rn un vecteur propre associé. On a alors

⟨v, λv⟩ = ⟨v, Sv⟩ = ⟨v, AtAv⟩ = ⟨Av, Av⟩ = ∥Av∥2 ≥ 0.

On voit donc que
λ = µ2, avec µ = ∥Av∥

∥v∥
.

(b) Les valeurs singulières des matrices A et B sont les racines carrées des valeurs
propres des matrices

AtA =
(

11 0
0 6

)
et BtB =

1 0 2
0 0 0
2 0 4


Les valeurs singulières de A sont donc

√
11,

√
6 et les valeurs singulières de B sont√

5, 0, 0.
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