EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 11 8 mai 2025

Exercice 1. (a) Supposons que W; C Wy et considérons un vecteur y tel que y € Wi,
alors (x,y) = 0 pour tout x € Wj. En particulier (x,y) = 0 pour tout x € W; car par
hypothése on a Wy C Ws. Par conséquent y € Wit. On a donc montré que Wi+ C Wit

(b) On a vu au cours (Théoreme 11.2.3) que V = W;@Wit ; cela implique en particulier
que dim(Wjt) = n—dim(W;) . Six € Wy, alors (z,y) = 0 pour tout y € W;- par définition
de Wit. Par conséquent W, C (Wit)+, or ces deux sous-espaces vectoriels ont la méme
dimension et ils sont donc égaux.

(c) On montre les deux inclusions. Soit y un élément de (W; + Wy)*. Alors (z,y) = 0
pour tout z € Wi + Ws. En particulier (z,y) = 0 pour tout z € Wy, donc y € Wit
et (r,y) = 0 pour tout x € Wy, donc y € Wit. Cela montre I'inclusion (W; + W)+ C
Winwi.

Inversément, si y € Wit N W4, alors pour tout & € Wy + W5 on a (z,y) = 0 car on
peut écrire x = 1 + x5 avec xy € Wy wt x5 € Ws, ce qui implique que

(z,y) = (21 + 22,y) = (21,9) + (v2,9) =04+ 0=0
car le produit scalaire est bilinéaire. Par conséquent y € (W, + Wy)® et on a prouvé
inclusion Wit N Wik C (Wy + Wa)t.
(d) Le dernier point est une conséquence de (b) et (c). Pour le voir, on note U; = Wit

et Uy = Wik et on applique les points (b) et (c) pour obtenir
Wi+ Wit =Uy +Us = (U + Up) Nt = (UF NUS)T = (W n W)t

Exercice 2. (a) Un calcul direct donne RjRy = Iy et SLS, = Ip.
(b) On a det(Ry) = +1 donc Ry € SO(2) et det S, = —1 donc S, & SO(2).

¢) La matrice S, est symétrique, donc diagonalisable comme matrice réelle par le
@ g
théoreme spectral.

(On peut aussi le voir a partir du déterminant, qui est le produit des valeurs propres.
Les valeurs propres ne peuvent pas étre complexes conjuguées car det(S,) = —1. Donc les
valeurs propres de S, sont réelles et de signe opposée, en particulier elles sont distinctes
et donc S, est diagonalisable).

(d) On a SZ = I,. Donc le polynéme minimal est pg, (t) =1 — 1= (t = 1)(t +1). Il
est scindé a racines simples et donc S, est diagonalisable sur le corps des réels. Notons
pour la suite que les valeurs propres de S, sont +1.

(e) Les valeurs propres complexes de Ry sont e = cos(f) +isin(f) et e~ = cos(#) —
isin(f); donc Ry n’est pas diagonalisable comme matrice réelle si 6 ¢ {0, 7}.

Si @ =0 ouf =7 (modulo 27) alors Ry = %I, est trivialement diagonalisable (en fait
c’est déja une matrice diagonale).
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(f) Ry est diagonalisable comme matrice de My(C) pour tout 6. On 'a vu au point
(e) dans le cas ou 0 € {0,7}, et si 6 ¢ {0, 7}, alors Ry possede deux valeurs propres
complexes distinctes et est donc diagonalisable comme matrice de My(C).

(g) Soit v = (z,y) un vecteur non nul de R?. On calcule alors que 'angle entre v et
Ry(v) est
_ (0 Ry(v)) (v, Ro(v))
[ol[l| Ro ()l Il

Donc oo = £6. En argumentant sur 'orientation on vérifie que o = 6.

(h) On a
B cos () —sin(p) cos (p) —sin(p)
RO)R(p) = ( sin () cos (@) ) ( sin () cos(p) )
0)
0)

(
( cos (0) cos () — sin (0) sin (¢) — cos (6) sin (p) — sin (€) cos () )
sin (0) cos () + cos (0) sin (¢)  cos (6) cos (¢) — sin (6) sin ()

= cos(0).

cos(av)

0 n

D’autre part il est clair que R(0)R(y¢), qui représente la composition d’'une rotation
d’angle 0 et © est la rotation d’angle 6 + ¢, on a donc

cos (0 + ) —sin(0+ ) )’

R(0)R(p) = R(0 + ¢) = ( sin (0 +¢)  cos (6 + )

ce qui donne une preuve des relations :
cos (0 4 @) = cos (6) cos (¢)—sin (A) sin (¢) et sin (0 + ¢) = sin (0) cos (¢)+cos (#) sin (p) .

(i) En utilisant les relations cos(2¢) = cos(p)? — sin(p)? et sin(2p) = 2 cos(¢) sin(y), on
calcule que

5 (eos«o)) _ ( (2¢9) cos () + sin (2 ) sin (90)) _ (cos«o))

sin(p) ) \sin (2¢) cos (p) — cos (2 ) sin (p) sin(ep)

Ainsi (Z?SEZ)) ) est un vecteur propre de valeur propre 1 pour S,. Puisque S, est symé-

trique, on doit avoir un vecteur propre orthogonal ce vecteur (pour la valeur propre —1)

et on vérifie en effet que
— sin(yp) — sin(y)
Sy =—
cos() cos()
On a donc trouvé une base orthonormée de R? formée de vecteurs propres de S, et on a
donc la diagonalisation orthogonale suivante :

(e e ) (i e ) (ot oo )= (5 )
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Exercice 3. (a) Une matrice A € M,(R) est orthogonalement diagonalisable s’il existe
une matrice orthogonale P € O(n) (i.e. P'P = I,,) telle que

D =P AP = P'AP est une matrice diagonale.

Observer que du fait que P~1 = P! (car P € O(n)), la matrice diagonale D est a la
fois semblable et congruente a A.

Concretement, pour diagonaliser orthogonalement une matrice réelle, il faut trouver
une base propre qui est orthonormée. La matrice modale (de changement de base) P est
alors une matrice orthogonale.

(b) Si A est orthogonalement diagonalisable, alors A = PDP' avec P € O(n) et
D'=D. On a donc :

A= (PDP")' = (P")'D'P' = PDP' = A.

(¢) Oui, la réciproque est vraie par le théoréme spectral. Donc une matrice A € M, (R)
est orthogonalement diagonalisable si et seulement si elle est symétrique.

(d) Le polynéme caractéristique de la matrice A donnée en (b) est xa(t) = (t—1)(t —
2)(t+2) et 04 = {1,2,—2}. Il y a donc trois espaces propres de dimension 1 et on sait
que ces espaces propres sont deux-a-deux orthogonaux (car A est symétrique).

Donc toute base propre de A est une base orthogonale de R?, que I'on peut rendre
orthonormée simplement en divisant chaque vecteur de cette base par sa norme.

On trouve une base propre de A en résolvant AX = AX pour A € {1,2, -2} (par
exemple en utilisant la méthode de Gauss-Jordan). Une telle base propre est

X =(V2,1,0), X,=(-1,v2,1), X3=(1,-v2,3).

On vérifie d’ailleurs facilement que ces vecteurs sont deux-a-deux orthogonaux. En nor-
malisant ces vecteurs (i.e. en les divisant par leur norme), on obtient la base spectrale
(base propre orthonormée) voulue :

- (S50) e (382, e (E00)
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On vérifie alors que P € O(3), i.e. PP = I5. Ceci implique que P~! = P! et on vérifie
aussi que

1 0 -1 1 0 0
P~ 'AP = P'AP = P!. 0 1 v2)-P=[02 0
-1 V2 -1 00 —2

Exercice 4. (a) Supposons que Q(v) = (v, v) mais que  n’est pas symétrique. Posons
alors a(u,v) = 3(B(v,w) + B(w,v)), alors a est clairement symétrique et

a(v,v) = B(v,v) = Q(v).
(b) On suppose maintenant que Q(v) = [(v,v) ou (3 est bilinéaire et symétrique. En

utilisant la bilinéarité, on vérifie alors que pour tous v,w € V on a

i(@(v +w)—Qv—w)) = i(ﬁ(v +w,v+w) — v —w,v—w)) = Gv,w),

donc f est déterminé par Q).
(c) La bilinéarité de 5 entraine que

Q()‘U) = 6()‘7}7 )‘U) = AZﬁ(”? U) = AQQ(”)'

(d) La réciproque est fausse, en général la condition Q(Av) = A?Q(v) n’entraine pas
que Q est une forme quadratique. Voici un exemple, considérons la fonction @Q; : R? — R
définie par Q (21, z2) = (|21 + |22])*. Alors @ vérifie @ (Az) = A2Q(z) pour tout A € R
et tout x € R?, mais ca n’est pas une forme quadratique. Pour le voir on peut vérifier
que la fonction

1
p(z,y) = 1 (Qi(z +y) — Qi(z —y))
n’est pas une forme bilinéaire. Par exemple on a
e(1,0;1,1) =2, ¢(1,0;0,1) =0, ¢(1,0;1,0) = 1;

donc
©(1,0;1,1) # ©(1,0;0,1) + ¢(1,0;1,0)
Plus généralement, la fonction @), : R™ — R définie pour 1 < p < oo par

n 2/p
Qp(x) - (Z |$Z|p)

vérifie Q,(Ar) = \?Q(z) pour tout A € R et tout x € R, mais c’est une forme quadratique
(i.e. cette fonction provient d'une forme bilinéaire) si et seulement si p = 2.
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Exercice 5. Nous procédons par complétion des carrés. Pour (); on a presque immédia-
tement

Qi(z,y) = 4z +y)* — 42”,

Pour (), il faut plusieurs étapes. On considere d’abord la partie de la forme quadratique
Q2 qui contient x, on a

4a® — 4oy + 1222 = (20 — y + 32)* — (y* — 6yz + 927).
Donc
Q2(z,y,2) = (22 — y + 32)* — (y* — 6yz + 92%)) —y*—10yz+ 72> = (2z—y+3z)*—2y*—4yz—22>.

Maintenant il faut écrire (2y* + 4yz + 22%) comme somme de carrés (I'intérét est qu’on
a une variable de moins : cette expression ne dépend plus de ), or on a clairement que
(2% + 4yz + 22%) = 2(y + 2)*. On a donc finalement,

Q2(z,y,2) = 42® — 4oy + 1202 — oy — 10yz + 722 = (20 — y + 32)* — 2(y + 2)*

Exercice 6. L’affirmation est que si Q(v;) = 0 pour tous les vecteurs d’une base
{v1,...,v,} de V, alors @ est identiquement nulle. Cette affirmation est fausse!

Avant de donner un contre-exemple, il est utile de se souvenir que si une application
linéaire est nulle sur tous les vecteurs d’une base, alors cette application est identiquement
nulle, c’est-a-dire nulle sur tous les vecteurs de l’espace vectoriel . Mais il n’y a aucune
raison que cette propriété soit vraie pour les formes quadratiques, car ce ne sont pas des
applications bilinéaires. En particulier, si Q(v) = Q(w) = 0, il n’est pas e priori vrai que
Qv +w) =0.

Voici un contre-exemple. Considérons la forme quadratique sur R? définie par
Qx)=af—15 & g(z,y) = 1131 — T2y>.

Les vecteurs u; = (1,1) = e; + e3 et uy = (1,—1) = e; — e; forment une base isotrope
(on vérifie que Q(u;) = Q(uz) = 0 mais ) n’est pas identiquement nulle.

Pour comparer, on peut en revanche observer que si une forme bilinéaire 5 : V X
V' — K vérifie B(v;,v;) = 0 pour tous les vecteurs v;,v; d'une base de V, alors /3 est
identiquement nulle, i.e. 3(z,y) = 0 pour tous z,y € V.
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Exercice 7. La troisieme fonction n’est pas une forme quadratique, les autres le sont.

o Pour la premiére, on a Q(x1, o, 13) = |x1 — o +x3]? = (21 — 22 +73)? (il ne faut pas
se laisser abuser par la présence des valeurs absolues, qui ici ne sont pas nécessaires). C’est
une forme quadratique sur R3 et la forme bilinéaire symétrique associée 5 : R?* x R? — R
est

B(w,y) = (x1 — 22+ 23) (Y1 — ¥2 + y3).

o La deuxiéme fonctionnelle est aussi une une forme quadratique sur C%(R) et la
forme bilinéaire symétrique associée 3 : C*(R) x C*(R) — R est facile & deviner :

Bha) =5 [ OO+ 7Ot

o La quatrieme fonctionnelle s’écrit

det i1 Tiz2\ _
€ = T11%22 — T21TL12-
T21 T22

C’est une forme quadratique sur Ms(R) et la forme bilinéaire symétrique associées 3 :
MQ(R) X MQ(R) — R est

T T 1
5(X7 Y) =3 (( 1 12) ) (yn y12>) =3 (51711y22 — T21Y12 — Y11T22 + Z/Qlfﬂlz) .

To1 T2 Y21 Y22 2

o La troisiéme fonction Q(x1, Tq, 23) = (|21 — 2| +|z3])? vérifie Q(Azx) = \?Q(z), mais
elle n’est pas une forme quadratique. Pour le voir on peut écrire la formule de polarisation
et voir qu’elle ne donne pas une forme bilinéaire, mais le calcul est assez lourd. Une autre
méthode est de vérifier que Q n’est pas de classe C2. En effet, on a par exemple

Q(1,0,0) = (lz1] + 1)* = 1 + 2° + 2|z,
qui n’est pas une fonction différentiable de la variable x.
Remarque : si on développe () on trouve
Q(x1, 79, 73) = (|71 — To| + |73])* = 27 + 25 — 22115 + 23 + 2|71 — T2 |73],

contrairement a la premiere fonction de I'exercice, les valeurs absolues « persistent » lors
du développement, ce qui explique la non différentiabilité de Q.



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 11 8 mai 2025

Exercice 8. (a) Démontrer que pour toute matrice A € M,,x,(R), il existe une matrice
orthogonale P € O(n) et py, ..., u, > 0 tels que

i 0
P'A'AP =
0 T
Les nombres 1, ..., u, s’appellent les valeurs singuliéres de la matrice A.
1 1
(b) Calculer les valeurs singulieres de la matrice A= | 1 2 | et B=(102).
3 —1

Exercice 9. (a) Notons S = A'A, alors S est symétrique car S* = A'(A")! = A'A =
S. Donc par le théoreme spectral S est orthogonalement diagonalisable. Nous devons
démontrer que les valeurs propres de S sont positives. Soit A € R une valeur propre de S
et v € R" un vecteur propre associé. On a alors

(v, \) = (v, Sv) = (v, A'Av) = (Av, Av) = || Av||* > 0.

On voit donc que
| Av]]

loll -

A=’ avec u=

(b) Les valeurs singuliéres des matrices A et B sont les racines carrées des valeurs
propres des matrices

10 2
AtA:(lol g) et BB=|0 0 0
2 0 4

Les valeurs singulieres de A sont donc /11, V6 et les valeurs singulieres de B sont

V5,0, 0.




